Dynamic Behavior of Cryogen Spray Cooling: Effect of Spray Distance

نویسندگان

  • G.-X. Wang
  • J. S. Nelson
چکیده

Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during laser dermatologic surgery. During CSC, skin surface is cooled by a short spurt of refrigerant R134a with boiling point of –26.2 C. Since R134a is volatile in open atmospheric conditions, the atomized liquid droplets undergo continuous evaporation as they fly in air, leading to a lost momentum and mass. Therefore, the cooling effect of CSC depends strongly on the spray distance between the nozzle and the skin surface (L). The objective of this study was, therefore, to investigate the effect of L on the dynamic heat transfer of CSC. A skin model system made of poly methyl-methacrylate resin (Plexiglass®) is used to simulate CSC during laser dermatologic surgery. A fast-response temperature measurement sensor is built using thin (20 μm) aluminum foil and placed on top of the plexiglass with a 50 μm bead diameter thermocouple positioned in between. Variation of the surface temperature is then measured under various spray distances. The surface heat flux (q) as well as the heat transfer coefficient (h) between the surface and the cryogen is estimated by solving an inverse heat conduction problem with the measured temperature data as input. The effect of L on surface cooling in CSC is then investigated systematically. Both the estimated q and h show strong dynamic characteristics and are strong functions of the L. Two distinct spray-surface interaction mechanisms are identified within the spray distances studied. For short L (< 30 mm), the spurt droplets impinge on the substrate violently, resulting in a fairly thin cryogen film deposited on the surface. Strong dynamics and high q result in this case, corresponding to a high h as well. Interestingly, h becomes strongly fluctuating and even larger after spurt termination for these cases. For long L (> 30 mm), q is lower and it steadily decreases after spurt termination. The dynamic variation of h in this case is similar to that of q. These results should help in the selection of optimal CSC parameters, which are needed to produce high heat fluxes at the skin surface and thus obtain maximal epidermal protection during various dermatologic laser therapies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Cryogen Spray Cooling Parameters on the Heat Extraction Rate from a Sprayed Surface

Cryogen spray cooling is used to prevent epidermal thermal damage during port-wine stain laser therapy, despite the limited understanding of the fluid dynamics, thermodynamics, and heat transfer characteristics of cryogen sprays. In recent studies, it has been suggested that the heat flux through human skin could be increased by changing physical parameters such as nozzle-to-skin distance, nozz...

متن کامل

Effect of skin indentation on heat transfer during cryogen spray cooling.

BACKGROUND AND OBJECTIVES Cryogen spray cooling (CSC) is used to pre-cool the epidermis during dermatological laser procedures such as treatment of port wine stain (PWS) birthmarks, hair removal, and non-ablative photorejuvenation. Thus far, heat transfer studies related to CSC optimization have assumed a flat surface but clinical observation suggests that human skin indents due to the force of...

متن کامل

Influence of nozzle-to-skin distance in cryogen spray cooling for dermatologic laser surgery.

BACKGROUND AND OBJECTIVE Cryogen sprays are used for cooling human skin during various laser treatments. Since characteristics of such sprays have not been completely understood, the optimal atomizing nozzle design and operating conditions for cooling human skin remain to be determined. MATERIALS AND METHODS Two commercial cryogenic spray nozzles are characterized by imaging the sprays and th...

متن کامل

Correlations between Spray Properties and Heat Transfer Dynamics during Cryogen Spray Cooling

INTRODUCTION Cryogen spray cooling (CSC) has been used along with pulsed lasers for nearly a decade to irreversibly photocoagulate a variety of vascular lesions. However, the fundamental mechanisms that take place at the skin surface are still incompletely understood. In this work, we built a fast-response temperature sensor with the objective to determine the time in which liquid cryogen remai...

متن کامل

Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures.

Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during laser dermatologic therapy. However, the dominant mechanisms of heat transfer during the transient cooling process are incompletely understood. The objective of this study is to elucidate the physics of CSC by measuring the effect of initial substrate temperature (T0) on cooling dynamics. Cryogen was delivered b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003